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F-actal Iniage Compression Using Iterated Transforms:

Applications to DTED

E.W. Jacobs and 1{.1). Boss

NCCOSC MYI)T&E 1)iv
Code 573, San Diego, CA 92152-5000

ABSTRAC'.T: A review of iterated transformation 2. BACKGROUND: SIMPLE EXAMPLES

image compression is presented. Generalization of sim-

ple iterated function system fractal generating algorithms This example serves as a simple illustration ofsorne con-

to an automated iterated transformation algorithm used cepts involved in the iterated transform image-encoding

to compress greyscale images is reviewed. Compressed scheme. This example is based on iterated function sys-

images from the Digital Terrain Elevation Database are tems. The main concept is that the image of a &et (a

presented, and compared with encodings using adaptive Sierpinski gasket, in this case) can be reconstructed from

discrete cosine transformations, and mean residual vector a set of transformations which may take less memory to

quantization image compression techniques. store than the original image.

1. INTRODUCTION Consider the three transformations shown in figure 1.

They are

Because of the increasing use of digital imagery, there

is currently considerable interest in the image compres- w =

sion problem. In particular, image compression is a cur-

rent and growing necessity for Navy applications includ-

ing storage and transmittal of maps, intelligence pho- 0 + I

tographs, weather information, etc. General interest in and

image compression has led to the establishment by the [

Joint Photographic Experts Group of a standard based w17 = I i 0 +

on discrete cosine transforms (ADCT). There is also an For any set S, let

on going effort in the research community to design im-

proved vector quantization (VQ) methods, and to develop 3

methods which utilize wavelet transformations. A rela- W(S) U W,(S).

tively new approach to the image compremsion problem, Denote the n-fold composition of W with itself as

iterated transformations, has been presented by Jacquin Define A, = W(A,.i) = W*"(Ao) and arbitrarily choose

[1,2]. This method has its foundation in the theory of iter-

ated function systems (IFSs), developed by Hutchinson [3] Ao a the u s w loe l corner)at the og

and Barnsley [4], and recurrent iterated function systems (,n --. co, the set A. converges to a limit set Ao. In fact,
[5]. The iterated transform algorithm has received partic- n y o mpat set S c t- a s n fact,

ular interest because of the fractal nature of the encoded
Figure 2 shows A0, A,, A2, A3, A4, A.5 and Aco..

images, and because there has been much speculation,

but little information available on the capabilities of the That all compact initial sets converge under iteration

method. The first sections of this paper review the basic to A., is important-it means that the set Ac, is defined

methodology of the iterated transform image compression by the wi only.

technique. This is followed by a section on the compres-

sion of the Digital Terrain Elevation Database (DTED) Each wi is determined by 6 real values, so that for this

in which results obtained using iterated t-Ansformations example 18 floating point numbers are required. In single

are compared to ADCT and VQ methods. precision, this requires 72 bytes. The memory required to
store an image of the set depends on the resolution; the

48.2.1
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domain, which each wi acts on must be stored as part
S: wof the encoded image. Second, the transformations have

to be generalized to three dimensions. A gray s&We im-
age can. be thought of as a three-dimensional image, each

w3--1 pixel having an z, y coordinate, and an intensity value z.

0 4 i 0 A form for the transformations which is convenient for
encoding gray scale images is,

Figure 1. Three afine transformations in the plane.

Z 0 0 8i z 01ELI = [ a, "]f ] I 'I I +
Consider the sixteen transformations.

W 0 0. 0 1.76 W r
0.: 0.0 0.0 0.8 2.0 0.76 0.25 0.0
0.8 0.0 0.0 0.' 2.0 0.80 0.0 0.0
0.5 0.0 0.0 0.5 2.0 0.50 0.28 0.0
05 0.0 0.0 0.8 3.0 00 05 00
0.8 0-0 0.0 0.8 2.0 0.0 0.75 0.0S•0. 5 0. 0 0,0 0,5 2-0 0 26 0-75 0.0
0.5 0.0 0.0 0,5 2.0 025• 0_76 0.0

0 0 -'0.1O, 0.0 0.26$ 0 26 -0.15 0,0

0.0 -0.8 0.5 0.0 0.28 0.25 0.0 0.2500 .01- 0. 6 0.0 0.25 0.6 -0,26 0.26L b0.0 -0.5 0.5 0.0 0.25 0.0 0.0 0.0
0.0 .0.5 0,: 0.0 0.25 0.75 0125 0•0
0.0 -01$ 0,- 0.0 0-2:5 0.7S 0ý$ 0.26

0.0 .0. 5 0, 0.0 0.28 1.0 0.28 0.250,0 .0.$ 016 0.0 0. 25 1.-,0_ 0.5 1 0.0

Figure 2. Ao, A,A 2,A3,Ai,Aa, and AA4.

where the first eight transformations are restricted to act

on the region {(z, y)10 _< z <_ 1/2, 0 5 y < 1/2), and the
A. image requires 256 x 256 x 1 bit = 8192 bytes of second eight transformations are restricted to act on the
memory. The resulting compression ratio in this example region {(z, y)l1/2 < r < 1, 0 _< y :5 1/2). Similar to the
is 113.8: 1. example given above, the map W is defined as the union

of the wi's. Let values of z = 0 be represented as black,
It is inherently difficult to find an IFS which will encode z = 1 as white, with intermedizte values as shades of gray.

an arbitrary set. Furthermore, in this example, the image The initial image A. is ari .trarily chosen as z = 0.5 for
of the Sierpinski gasket is described by a set of pixels, each { (z, i)10 < r _5 1,0 :5 y ý5 1). The first six iterates, and

being either black or white. The problem of more inter- the fixed point are shown in figure 3. In practice, the
est for image compression applications is the encoding of values of z, y, and : are discretized. When the image in
gray scale images (i.e., an image in which each pixel has this example is jiscretized as 128 x 128 pixels, and 8-bits
many possible gray levels, not just black or white). There per pixel, the encoder used in this paper [6,7] automat-
are two generalizations to the simple example given above ically en.odes this image (using an equivalent set of 16
which make encoding gray scale images feasible. First, in- transCjrmations) with the resulting compression equal to

stead of each wi operating on the entire image, the wi are 35b:i.
restricted to operate on a section of the image. The the-

ory of IFS's has been extended by Barnsley and Jacquin 3. ENCODING AND DECODING AN IMAGE
[5] to allow transforms to operate on only parts of the set

rather than the entire set, in a meýhod they call rectur- The question that must be answered is, given an in-
rent iterated function systems. The particular section, or age, what is the method for finding transformations that

48.2.2
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II, ii. 111k lOioi is~ll~l1 theni. wli;t hajqwiis if the

1119g (f) is alTproxinuatL ? A cor(illary of the coittractov-aip)ing fixed point theo:>rem, which iarrislky calls tlh-
Collap, Theorem, puts a bound iion the error bwtw,•ne ij,

and f whei IV(f) dovea riot exactly equal f 'Ihel theortuii1

says that the closh'r the covering W'(f) is to the originial

set f. the closer th,. fixed point jWj will be to f. and that

this is especially irure if the transformatioJns colinposing W

are vorv contractive.

In figure 4 part of the encoding process for this image

i o n I t• •is illustrated. The figure demonstrates how one section

of the image, called a range (1]), is covered as cloiely

as possibhe by applying a transformation w, to a domain

- ~ (I),). To complete the encoding procesis, a U., and D.,
must be found to cover each Ri, and the H,'s must corn-

l~* pletely tile the image. To facilitate compact specification

of the transformations, the sets from which D's and R'8

Figure 3. AAlA 2 , A3 ,A 4,A,,,A6, and A for the 16 are chosen are restricted to be geometrically simple, and

transformations listed in the text. limited in number. The w,'s must be chosen such that

upon iteration, a fixed point is reached. In light of the
collage theorem, it is surprising that when the map W

encode it? The contractive mapping fixed point theo- is constructed, it is not necessary to impose any contrac-

rem suggest how to answer this question. The contractive tivity conditions on the individual transforms. The nec-

mapping fixed point theorem guarantees that, if F is a essary contractivity requirement is that W be eveniually

complete metric space, and the map W: F -- F is a con- contractive 8. A map W: F - F is eventually contrac-

tractive transformalion, there exists a unique fixed point tive if there exists a positive integer m such that the m4•

IWJ = A ,,-= . W*0"(Ao), for any Ao E F. iterate of W is contractive. Note that in the gray scale

Since the limit set is a fixed point, example of section 2, half of the transformations are not

contractive in the z direction.

IWl = W(IWI) = wi(1WI) U-. U w.(IWI). (2)
As shown for the simple examples in the previous sec-

This formula suggests how one would seek the transfor- tion (figures 2 and 3), decoding an image is performed

mations wl,..., w, which encode a given image. The goal by starting with an arbitrary initial image, and iterating

is to have the fixed point JWf approximate the desired im- the transformations until the fixed point is reached. This

age f. The transformations should therefore be chosen to process is shown for an encoding of "tank farm" in fig-

satisfy equation 2 with IWI replaced by f, i.e., the trans- ure 5. The compression of this image was 8_66:1, and the

formations, when applied to f, should result in f. The PSNR = -20 log("""') = 33.6 dB.255

wi(fl .... , vw(f) are said to cover the image f. Refer-

ring back to the two examples in the previous section, it

is seen that, given the Sierpenski triangle, or the fractal 4. APPLICATION TO DTED

square pattern, by satisfying equation 2 the transforma-

tions encoding these images could be found. Application of image compression to geographic map
data is of particular interest to the Navy. Geographic map

In the two examples, the covering W(f) is exact. Given data comes in a variety of formats, and there has been ex-

an arbitrary set f, it is not possible in general to exactly tensive work done in compressing map databases for vari-

cover f with a finite number of transformations of itself. ous applications. In this section, the problem of compres-

48.2.3
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Figure 5 Initial image, firo itrat. , wnd it, rate, and tenth
iterate for an encoding of the -tatik farm" image.

were also con,pre-sed •'t h an AI)('T aind rean r(;s•dual

vector quantization algorithmrn (.MIRVQ) I)TEI) data can

Domain Square be thought of in termis of a gray s-ale image where the lon-

gitude and latitude idnt ify the pixel, and the elevation is
the pixel value. For the purpose of pos-sible Navy applica-

tion, the data were transformed from their original linear

scale bet ween 0 and 10000 meters, to a logarithminc scale
between 0 and 255. The quantization results in a cornpres-

Range Square Domain Square sion from 14 bits per datapoint to 8 bits per datapoint.

This logarithmic scale, shown in figure 6, represents lower

Figure 4. Part of the encoding process. elevations more accurately than higher elevations, the ra-
tionale for this being that lower elevations areas are more

likely to be important for Navy applications, and that

nearly all of the earth's surface (particularly near coast-
sion of the Digital Terrain Elevation Database (I)TED) lines) is at relatively low elevation.

is addressed. The database consists of elevation data for
a grid of longitude--latitude coordinates where the grid The iterated transform algorithm was identical to that
points are roughly 100 meters apart. A complete descrip- used in reference 6 except for one significant modifica-
tion of DTED can be obtained from the Defence Mapping tion. The algorithm was modified to encode sections of the
Agency. Alward and Nicholls [9] examined hierarchical image on coastlines with increarsed accuracy. For image
data structures as applied to DTED. The data structures sections that contained coatline, the error criteria was
result in some data compression, although compression tightened. This resulted in more segmentation, and there-
was not the primary goal of that investigation. In this fore higher fidelity in these areas The Ai)('T algorithm

section, the problem of interest is evaluating the perfor- used was similar to that described by ('hen and Pratt
mance of the iterated transform (IT) method on DTEl). [10]. except for a modification similar to that described
This would be useful for applications where data comnpres- above for the iterated transform algorithm. To encode
sion is the primary concern, and issues such as hierarchical coastlines more accurately, the decision level quantizer
structure, access time, and decoding time are ofsecondary table was cornpressed for sections of the image on coast-
importance. As a means of evaluation, the DTED images lines. Improving the fidelity at the coast lines resulted in a

48.2.4
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Figure 7 Pixels of value 100 i2 metern.

Figure 6 . The scale transformation used for the DTED data.

Table I . Results for encodings of figure i.

decrease in the overall compression-fidelity performance. Method Compression PSNR(dB) Figure
IT 44.86:1 32-98

The MRVQ algorithm used was based on the method de- IT 21.49:1 35.08 9

scribed by Linde et al. (11]. Codebooks were generated ADCT 47.33:1 30.51

from 2 sections of DTED similar to (but not including) ADCT 21.08:1 34.92 10

the section tested. MRVQ 32.00:1 31.36 11

The compression methods being considered are prop-

erly applied to images with a dynamic range appropriate Table 2. Resuits for encodings of figure 12.

to the number of bits used to store the image, and a rel-
Method Compression PSNR(dB) Figureatively smooth distribution of gray level intensity values IT 104.11:1 34.09

over this range. In figure 7, the 512 x 512 section of IT 42.08:1 39.03 13

DTED, which is 10 east of that section shown in figure 8 ADCT 75.53:1 33.86

is displayed where sea level is displayed in gray, all pixels ADCT 43.76:1 38.14 14
MRVQ 32.00:1 36.93 15

with an elevation that is a multiple of 100 (± 2) are dis-

played in black, and all other elevations being displayed in
white. It appears that the majority of the data contained age. This wizi lead to an artificially poorer measured fi-
in this section of DTED were created from 100-meter con- delity of the encoded images. In areas of OTED where
tour maps, the result being that a disproportionate num-

ber of datapoints are at multiples of 100 meters. In the the data are "properly" digitized, this situation will not

southeast corner of the map, it can be seen that the num- occur, Because not all the data are quantized at a course

ber of points at 100 meters are far more dispersed. In resolution, but only most of it, taking advantage of this
this section of the map, roughly the number of datapoints quantization is not simple. Although it has not been done

thissecionof he aprouhly he umbr o daaponts here, before applying loesy compression techniques such as

that would be expected based on random elevations are

present. The biased quantization illustrated by figure 7 is iterated transforms, ADCT or VQ, requantization of the

evident in other sections of DTED. data in such a way that the majority of the datapoints re-
tain their correct values could result in overall improved

Because of this biased quantization, the reconstructed performance.

image resulting from compressed encodings will have a
smoother distribution of pixel values than the original im- Tests in this section were performed on two 512 x 512

48.2-5
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Figure 8 Original 5* to 5* 25.6' E, 610 to 61* 12.8' N. Figure 12 . Original 60 to 60 25.6' E, 610 12.8' to 61* 25-6' N

Figure 9. The decoded IT image of figure 8. Figure 13 The decoded IT image of figure 12.

Figure 10. The decoded ADCT image of figure 8. Figure 14 The decoded ADOT image of figure 12.

Figure 11 .The decoded MRVQ image of figure 8. Figure 15. The decoded MRVQ image of figure 12.
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